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Abstract. A recent normal-form approximation for dynamical equilibria of one-dimensional
Hamiltonian systems is shown to provide a phase-integral (WKB) approximation to solutions of
nonlinear differential equations. In the present paper, a restricted class of ordinary differential
equations d29/dx2 + h2(x)9 + hn(x)9n−1 = 0, n > 3, is considered. The integrability of
the truncated normal form allows for expressing the solutions as trigonometric expansions in
terms of an ‘amplitude’ and ‘phase’. The method is applied to a Dirichlet boundary value
problem on the intervalx ∈ [x0, x1] for n = 3 andn = 4 where the coefficient functions depend
on an additional parameterω. As in the constant coefficient case, we obtain approximate
expressions for eigenvaluesωk, k = 1, 2, . . . and eigensolutions near the linear limit. The
results show that the interpretative and the predictive power of the linear WKB solutions
carry through to the nonlinear regime of small-amplitude, wavelike solutions9(x). We further
analyse the mechanism by which the ‘odd-n’ nonlinearity in general causes a splitting of the
linear eigenvalues. In particular, we discuss the singular threshold behaviour of the doubling
mechanism for nonlinearities withn = 3. If the coefficient functions become constants, the
doubling of eigenvalues corresponding to standing waves of odd numbers of nodes gradually
disappears. The method of approximation can be worked out similarly for any ‘perturbing’
polynomial in9(x).

1. Introduction

As a particular application of a recent normal-form theory [1], we consider finding
approximate solutions to a class of nonlinear, stationary wave equations

d29/dx2 + h2(x)9 + hn(x)9n−1 = 0 n > 3. (1)

This differential equation appears in various contexts, such as the search for wavelike
solutions or stationary solutions to partial differential equations. The linear part of
equation (1) has a form suitable for WKB approximations (see a recent review by Fröman
and Fr̈oman [2]). The linear WKB theory can handle quite intricate situations with several
real and complex transition points (i.e. zeros or singularities ofh2(x)) on, or near the interval
of x-values relevant in a particular problem. If the linear coefficient is slowly varying and/or
its value is large for almost allx, then the approximation is expected to be successful.
Such successes are well documented and have been accompanied by detailed semiclassical
descriptions of quantal spectroscopy and scattering phenomena. The approximation has also
contributed to the understanding of the linear stability problem [3] and the asymptotics of
‘special functions’ defined by second-order ordinary differential equations [2].

In the nonlinear context of this article, we do not restrict the treatment to the particular
situations with periodic coefficients and/or with the linear coefficient having turning points
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698 K-E Thylwe and H Dankowicz

of importance. In both cases, asymptotic matching at (real or complex) transition points
is an important element and this is outside the scope of the present article. Here we will
assumeh2(x) > 0 and that the usual WKB approximation applies to the linearized problem.
The remaining coefficienthn(x) is a quite arbitrary, smooth function ofx.

A particular feature of the differential equation (1) is that it can be fitted into a canonical
formalism wherex replaces time. In fact, it can be derived from the underlying Hamiltonian

H(d9/dx, 9, x) = 1
2(d9/dx)2 + 1

2h2(x)92 + 1
n
hn(x)9n. (2)

With this Hamiltonian at hand there is still no immediate solution to the problem. In the
case of periodic coefficients, we can apply a normal-form theory to simplify the Hamiltonian
to the extent that the corresponding canonical equations can be trivially solved. These
solutions can subsequently be transformed back to give the solution in the original variables.
Fortunately, a similar normal-form (canonical perturbation) theory exists also in the case
of nonperiodic coefficients. In this short outline of the approximation method we only
summarize the essential first-order transformation between the ‘final’ and ‘initial’ canonical
variables and will refer heavily to the presentation in [1]. In the linear (small-amplitude)
limit, the resulting formulae correspond to the celebrated first-order WKB approximation.

The text is organized as follows. Section 2 summarizes the Lewis transformation and
the normal form theory of Thylwe and Dankowicz [1] and gives explicit expressions for the
approximate solutions derived within this theory. In section 3 we study a class of boundary
value problems and show how the nonlinear theory developed in this paper provides an
analogy to the traditional, linear WKB method. To illustrate the fundamental ideas and
make some of the later results more plausible section 3.1 describes a well known parabolic
partial differential equation and its stationary solutions. In the present context this example
corresponds to the constant coefficient case, which allows exact, although perhaps not too
illucidating, closed form solutions. Finally, section 4 concludes this paper with a summary
and suggestions for further study.

2. The normal form

2.1. First-order truncation

The normal form theory of Thylwe and Dankowicz [1] involves no further approximation
beside the normal-form truncation. It describes how to simplify the Hamiltonian (2) through
a series of canonical transformation. To first order the resulting truncated Hamiltonian can
be expressed in terms of the first-order, modified action-angle (Lewis) variables(L1, φ1):

KT D(L1, x) = η1(x)L1 + ηm(x)Lm
1 m = n/2 = 2, 3, . . . (3)

for the case of evenn, while the second term on the right is absent for nonlinearities of odd
powersn. In this representation the phase variableφ1 is cyclic to the order of truncation
considered. Consequently,L1 is an approximate constant of motion, as is typical in action-
angle formulations. However, in this case the instantaneous ‘angular frequency’ (or perhaps
more appropriately, the ‘local wavenumber’) depends explicitly on the positionx. Given
the truncated Hamiltonian (3), we thus obtain:

dφ1(x)

dx
= η1(x) + mηm(x)Lm−1

1 . (4)

Hence, we directly obtain the solutions

L1 = constant (5)
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and

φ1(x) =
∫ x

[η1(x) + mηm(x)Lm−1
1 ]dx (6)

whereφ1 is determined up to a constant angle.
A convenient formulation of the TD normal form utilizes the complex variable

Z =
√

2L1 exp(i[φ1(x) + β]). (7)

The dependence of the solution on initial or boundary conditions comes in through the value
of the invariantL1 and the initial phaseβ (conveniently made explicit here). Without loss
of generality we henceforth assume thatφ1(x0) = 0 leaving all arbitrariness inβ. Since
initial or boundary conditions are given in terms of the original variables, we also need the
explicit canonical transformations involved; we return to this below.

In the Hamiltonian (3), theη-coefficients depend nontrivially on the originalh-
coefficients. The leading coefficientη1(x) is shown to be [1]:

η1(x) = ρ−2(x) (8)

defined by a suitable solution of the Milne equation [4, 5] (see also an early paper by
Ermakov [6]), which containsh2(x) as a coefficient:

d2ρ

dx2
+ h2(x)ρ = 1

ρ3
. (9)

In the present context of generalizing the well known linear WKB, or WKB approximation,
the suitable Milne solution is one given by an adiabatic expansion ofρ−2. Formally, one
can construct the expansion as described by Fröman and Fr̈oman [2], where they use the

explicit differential equation forq
def= ρ−2. This choice of expansion appears natural in

the phase function and the result then corresponds to the usual WKB approximation in the
linear limit. To leading adiabatic order (sufficient for the present outline) the procedure
simply amounts to neglecting the derivative in the Milne equation. Hence, in the following
development we take the solution

ρ0(x) = [
1/h2(x)

] 1
4 . (10)

This means, in particular, that the first nontrivial normal-form coefficientη1(t) becomes

η1(x) ≈
√

h2(x). (11)

Since, by assumption,h2 > 0,
√

h2(x) has no singularities or branch cuts on the part of the
real x-axis of interest. Suitable generalizations will be discussed elsewhere.

We proceed to discuss the coefficient of the nonlinear term in the normal-form
Hamiltonian. The normal-form theory does not remove all the nonlinearity in the original
Hamiltonian. Some ‘diagonal’ parts, generated by even-order terms in the original
Hamiltonian (2), remain in the transformed Hamiltonian. The coefficient of the leading-
order contribution is given by

ηm = 1

2m
h2m(x)ρ2m(x)

(
1

2

)m (
2m

m

)
m = 2, 3, · · · . (12)

The adiabatic approximation (10) of the Milne equation leads to a consistent approximation
also for this coefficient. While only the even-order nonlinearities contribute explicitly to
the transformed Hamiltonian, we shall see later that the odd-order nonlinearities appear in
the canonical transformations.
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2.2. New and old variables

The first-order Lie transformation (see [1, 9] for details) relates the solution in the
transformed variables to the original ones. To facilitate its application one introduces the
auxiliary complex variable

z = [9 ′(x)ρ(x) − 9(x)ρ ′(x)] + i9(x)ρ−1(x). (13)

The near-identity transformation now becomes

z = Z + {w1, Z} (14)

whereZ is given in terms of the Lewis variables in equation (7). Here,w1 is a function of
Z andZ∗ and the Poisson bracket is with respect to the conjugate pair(Z∗, Z).

The ansatz for the Lie generating functionw1 in (14) is chosen to cancel off-diagonal
terms in the original Hamiltonian and, hence, is a sum of monomials of degreen, i.e.

w1 =
n∑

l=0

an−l,l(x)Zn−lZ∗l l 6= n/2. (15)

Symmetries in the relevant expressions (see [1]) imply thatal,n−l = −a∗
n−l,l . Rigorously,

the coefficients in the generating function have to satisfy a differential equation in order to
accomplish the desired canonical transformation. As before, however, we again introduce
an adiabatic approximation to the equation.

We have forl 6= n/2 (see [1]):

dan−l,l

dx
+ i(n − 2l)ρ−2an−l,l = 2i

hnρ
n

n

(
− i

2

)n (
n

l

)
(−1)l (16)

and an adiabatic argument (slowly varying coefficients) yields the leading approximation

an−l,l(x) = in2−(n−1) hn(x)ρn+2
0 (x)

n

(
n

l

)
(−1)n+l

(n − 2l)
. (17)

Note that in an exact treatment, there is no unique solution for the coefficients. Typically
one would then prefer the smoothest coefficient, and this should be close to the adiabatic
one, if it exists.

2.3. Explicit formulae

Next we give some explicit results for the low-order powersn = 3 and 4 of the nonlinearity
in the differential equation.

n = 3: we summarize the key quantities and give the final solution in each case.

ηm = 0 (18)

a3,0(x) = a0,3(x) = ih3

36h
5/4
2

def= id3,0 (19)

a2,1(x) = a1,2(x) = − ih3

4h
5/4
2

def= −id2,1 (20)

z = Z + a2,1Z
2 + 2a1,2ZZ∗ + 3a0,3Z

∗2 (21)

9(x) =
√

2L1h
−1/4
2 sin(φ1 + β)

+2L1h
−1/4
2 [3d3,0 cos(2φ1 + 2β) − d2,1(2 + cos(2φ1 + 2β))]. (22)

Note that the transformation coefficientsan−l,l are imaginary anddn−l,l are real here. From
these expressions it is clear that

√
2L1 acts as a small parameter, measuring the amplitudes
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of the waves while keeping track of the relative order of magnitude between linear and
nonlinear contributions. Similar expressions are obtained for all odd nonlinearities.

n = 4: in this case the same quantities are

η2 = 3h4

8h2
(23)

a4,0(x) = −a0,4(x) = h4

128h
3/2
2

(24)

a3,1(x) = −a1,3(x) = − h4

16h3/2
2

(25)

z = Z + a3,1Z
3 + 3a1,3ZZ∗2 + 4a0,4Z

∗3 (26)

9(x) =
√

2L1h
−1/4
2 (x)(sin(φ1 +β) +2L1[(a3,1 +4a4,0) sin(3φ1 +3β) +3a3,1 sin(φ1 +β)]).

(27)

Recall that the coefficients are real here and that the index symmetry changes. The realness
of the coefficient has the consequence that the cosines convert to sines here. We also note
that all nonlinear contributions are ‘oscillatory’, contrary to a non-oscillatory contribution
present in the previous case. Again, this is true for all even nonlinearities.

3. A nonlinear phase-integral (NPI) approximation

In this section we apply the above theory to a class of boundary value problems. We
will describe the similarities between the nonlinear theory developed in this paper and the
traditional WKB approximation mentioned in section 1. The stage for the nonhomogeneous
analysis is set by first restricting attention to the case of constant coefficients depending on
an unknown parameterω. In particular, the existence of solutions depended on the value
of the parameter. We will refer to values ofω for which solutions exist as eigenvalues and
the corresponding solutions as eigensolutions.

Following the constant coefficient discussion, in the nonhomogeneous situation we begin
by illustrating the linear case and proceed to analyse the effect of even-n nonlinearities,
represented byn = 4. The odd-n nonlinearities, represented byn = 3, cause a somewhat
more detailed analysis of the spectrum, which is related to a doubling mechanism.

In the following discussion we use Dirichlet boundary conditions:

9(x0, ω) = 9(x1, ω) = 0. (28)

In general, these conditions will in turn restrict the possible values of the parameterω.

3.1. The constant coefficient case

We consider the real Ginzburg–Landau equation in one spatial dimension on the finite
domain [0, L].

ut = uxx + h2(ω)u − h4(ω)u3. (29)

Here, the coefficient functions are functions of an unknown parameterω only, and
h2, h4 > 0. Versions of this equation appear as a normal form in bifurcation studies
for generic parabolic partial differential equations as well as in actual physical applications
(see for example [7] and [8]). We will assume Dirichlet boundary conditions at the domain
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Figure 1. Phase portraits for linear and nonlinear oscillators. Note the dependence of the
period on the amplitude and its implications on the existence of solutions of the boundary value
problem.

boundaries. In particular, stationary solutions correspond to orbits in(u, ux) space of the
undamped Duffing equation

uxx + h2(ω)u − h4(ω)u3 = 0 (30)

with initial and final states on theu = 0 axis.
As a first approximation we neglect the nonlinear term and draw a phase portrait for

the corresponding harmonic oscillator (see figure 1(a)). Since the period of the oscillations
around the origin is independent of the amplitude and only depends onω, it follows that for
a given value ofω, we either have no solutions or a continuum of solutions for all values
of the amplitude. In fact, solutions exist only for discrete values ofh2(ω).

In the nonlinear case, (see figure 1(b)), the period for bounded motion depends on the
amplitude of the motion. In particular, the period goes to infinity as the initial conditions
approach the separatrix. Thus, for a given value ofω there is a largest amplitude and a
related infinite family of discrete amplitudes corresponding to solutions to the boundary
value problem. As the amplitude decreases the number of turns around the origin increases
correspondingly. Continuous variations ofω lead to continuous variations of the allowed
values of the amplitudes. In this case solutions exist for intervals ofh2(ω).

If we further impose a condition on the slope of the solution at the left boundary,
solutions only exist for discrete values ofh2(ω). This is also a natural restriction when
numerically searching for solutions. In the present case, we note that the symmetry about
the vertical axis implies that given a solution with a prescribed slopeu′(0) and parameter
value ω, there is a solution with slope−u′(0) and the same value forω. This is not the
case when the symmetry is broken. For example, the odd-n nonlinearity, here exemplified
by the ordinary differential equation

uxx + h2(ω)u + h3(ω)u2 = 0 (31)

(see figure 1(c)) results in a splitting between the values ofω corresponding tou′(0) and
−u′(0) which grows with the degree of asymmetry. Clearly, the inner orbits, which also
have larger winding numbers, correspond to smaller splittings. This sort of symmetry
breaking and the corresponding splitting is reminiscent of eigenvalue splitting in quantum
mechanics.

The same phenomena will appear in the subsequent discussion, which will provide
approximate solutions to problems where the coefficient functions actually depend onx as
well asω. In the study of various types of instabilities and phase transitions in dissipative
partial differential equations, the types of stationary solutions we have described are of
fundamental use. In particular, their stability under small perturbations is of interest and
much research has been devoted to the constant coefficient case.
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3.2. Linear phase-integral eigenvalues

If our original equation (1) would be just linear (hn(x, ω) = 0), the adiabatic approximation
of the Milne solution and the identity transformation leads to the usual WKB solution of
the original problem

9(x, ω) = ρ0(x, ω)=Z(x, ω) =
√

2L1ρ0(x, ω) sin(φ1(x, ω) + β) (32)

whereρ0(x, ω) is given by (10). Note also that the invariant,L1, is related to the amplitude
of the WKB solution. The boundary conditions imply that nontrivial solutions exist only
for β = 0, π and

φ1(x1, ω) = kπ k = 1, 2, . . . . (33)

The eigenvalues,ωk, are obtained as solutions to this equation. Sinceφ1(x1, ω) is
independent of the amplitude of the wave, this eigenvalue condition results in no restriction
on the possible values ofL1. In linear theories it is standard to arbitrarily normalize
the solution, which in turn determinesL1. In addition to labelling the eigenvalues, the
index k also has the physical relevance that (k − 1) represents the number of nodes of the
eigensolution. We note the obvious similarities with the constant coefficient case of the
previous section, wherek describes the number of times a solution winds around the origin.

3.3. Even-n NPI eigenvalues

We now look at the eigenvalue problem corresponding to the nonlinearityn = 4. From the
explicit solution (27), the left boundary condition of the wave implies

0 = sin(β)[1 + 2L1[(a3,1(x0, ω) + 4a4,0(x0, ω))(3 − 4 sin2(β)) + 3a3,1(x0, ω)]] . (34)

This condition is satisfied byβ = 0 (andπ ) independently of the value ofL1. We notice
that, if L1 is sufficiently large, other solution ofβ may come into play. However, since the
approximation is only valid for small-amplitude waves, these values will not be considered.

We now impose the boundary condition atx = x1 to obtain

0 = sin(φ1(x1, ω))

×[1 + 2L1[(a3,1(x1, ω)+4a4,0(x1, ω))(3 − 4 sin2(φ1(x1, ω))+3a3,1(x1, ω)]] .

(35)

Again, we obtain the compact eigenvalue condition

φ1(x1, ωk) = kπ k = 1, 2, . . . . (36)

We recognize from (6) thatφ1 depends onL1 through

φ1(x1, ω) =
∫ x1

x0

[√
h2(x ′, ω) + 2L1

3h4(x
′, ω)

8h2(x ′, ω)

]
dx ′. (37)

For a given value of the ‘winding number’k we then obtain a relation between the eigenvalue
ωk and the Lewis invariantL1.

When searching for waves satisfying the boundary condition (36) we limit ourselves to
those within a given (small) amplitude class, specified byL1. This classification, however,
is not exact, and can cause some trouble when comparisons with exact waves have to be
made. In particular, the physical significance of the Lewis invariant is not immediate, nor
is its value easily related to measurable quantities. In section 3.1 we related the eigenvalues
to values of the slope at the left boundary, instead of the ‘amplitude’. Since the slope is
a measurable quantity of a solution, this enables us to make sensible comparisons between
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approximate and exact waves. Using equations (13), (24)–(26) one obtains the following
approximate expression for the derivative

9 ′(x0, ω) =
√

2L1h
1/4
2 (x0, ω) + 3(2L1)

3/2

32h
5/4
2 (x0, ω)

h4(x0, ω). (38)

For fixedk, this equation together with equation (37) yield a relation between the derivative
of the wave at the boundaryx = x0 as a function of the eigenvalueωk.

To facilitate a comparison between approximate and exact, numerical solutions, we
proceed as follows. We fix values of the Lewis invariant,L1, and the ‘winding number’,k.
The integral condition (37) then yields a value for the NPI eigenvalue,ωNPI

k . Substitutions
of this value into equation (38) then results in a value for the slope of the approximate
solution at the left boundary. We then impose this value on the slope of exact solutions and
vary the parameterω until an exact, numerical solution is found at whichωk = ωexact

k . This
can then be quantitatively compared with the approximate eigenvalue and eigensolution
obtained previously.

We illustrate the idea for a model system with

h2(x, ω) = ω2 (1 + x)2 (39)

and

h4(x, ω) = ω (1 + x)2. (40)

Assuming the Dirichlet boundary conditions are on the interval [0, 1], and a fixed value
of k, we try to find the relation between the eigenvaluesω = ωk and L1 satisfying these
conditions. The integral definingφ1(1) in the approximate condition (36) can be solved
analytically to yield

3

2
ω + 3

4ω
L1 = kπ. (41)

Using equation (41) in equation (38) we find

9 ′(0) = 5

4

(
2kπ

3
− ω

)1
2
(

2kπ

5
+ ω

)
. (42)

It is clear that equation (1) together with the given boundary conditions only has
solutions for ranges of values ofω. In turn, this implies ranges of the ‘amplitude’L1

for which exact solutions can be found. Since our normal form is only approximately valid
for small values ofL1, equation (41) limits our considerations to values ofω near 2kπ

3 or 0.
The latter can be eliminated by the restriction that the quartic terms be much smaller than
the linear terms. In table 1 we list choices of the indexk and the Lewis invariantL1 together
with the approximate eigenvaluesωNPI

k . Also shown are the approximate derivatives at the
left boundary from equation (42), and the ‘exact’ eigenvalues,ωexact.

Figure 2 illustrates the amplitude-dependence of the leading eigenvaluesωNPI
k in the

(ω, L1)-plane. The eigenvalues of the linear theory appear as vertical, broken lines. It
is seen for this model that the nonlinear shifts gradually decrease as the nodal numberk

increases.
In figure 3 we illustrate the approximate and exact solutions found using the described

procedure. This graphical comparison together with the fair agreement between approximate
and ‘exact’ eigenvalues in table 1, at least for sufficiently small values ofL1 and larger
values ofk, lends credibility to the applicability of the normal form developed in this paper.
While it is likely that higher-order approximations to the solution of the Milne equation
and the ordinary differential equations for the coefficientsaij would lead to a progressively
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Table 1. Comparison of NPI eigenvalues with exact ones for the casen = 4. Note that the
corresponding approximate and exact waves have the same slopes at the left boundaryx = 0.

L1 k 9 ′(0) ωNPI
k ωexact

k

0.0001 1 0.0205 2.0944 2.0603
0.0001 10 0.0647 20.9440 20.9395
0.0001 100 0.2047 209.4395 209.4391
0.1 1 0.6463 2.0702 2.0382
0.1 10 2.0466 20.9416 20.9371
0.1 100 6.4721 209.4393 209.4388
1 1 2.0157 1.8196 1.8480
1 10 6.4712 20.9201 20.9157
1 100 20.4665 209.4371 209.4367

Figure 2. Illustration of the NPI eigenvalue curvesωk(L1) (full-drawn curves) for the case
n = 4. The broken, vertical curves refer to the linear theory.

Figure 3. Comparison of approximate (full-drawn) and exact (broken) waves corresponding to
L1 = 1 andk = 1, 10, 100.

better agreement (up to some optimal order), we believe that the present theory should
suffice in many applications. In particular, the closed form expressions we have obtained
lend themselves to a qualitative analysis.
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Finally, we suggest using theL2 norm evaluated over the interval [0, 1] as an alternative
comparison between the approximate solution and one found numerically. In the case
of the approximate solution this becomes an algebraic expression in the amplitudeL1

which then offers a determination of the appropriate ‘amplitude’ to be used in the normal
form expressions. Moreover, it gives a check for which exact solutions could possibly be
approximated by the nonlinear WKB expressions found in this discussion.

3.4. Odd-n NPI eigenvalues

In the present section we perform similar eigenvalue calculations as above for nonlinearities
of odd n. The application of the NPI approximation becomes somewhat more complicated
in the odd case, the main phenomenon being a splitting of the eigenvalues due to the
nonlinearity.

For ease of reference we repeat the relevant expressions from section 2.3. The general
solution (22) can be written

9(x, ω) =
√

2L1h
−1/4
2 (x, ω)

×
{

sin(φ1(x, ω) + β) −
√

2L1
h3(x, ω)

2h
5/4
2 (x, ω)

[
1

3
cos(2φ1(x, ω) + 2β) + 1

]}
(43)

where

φ1(x, ω) =
∫ x

x0

√
h2(x ′, ω) dx ′. (44)

After simplification, the Dirichlet boundary condition at the left boundary becomes

sin2 β + C(x0, ω,L1) sinβ − 2 = 0 (45)

where

C(x, ω,L1) = 3h
5
4
2 (x, ω)√

2L1h3(x, ω)
. (46)

It is easy to show that equation (45) has real solutions only for|C(x0, ω,L1)| > 1 and is
given by

sinβ = 1
2(

√
8 + C2(x0, ω,L1) − C(x0, ω,L1)) (47)

from which we distinguish two initial phasesβ0 and β1 = π − β0, whereβ0 → 0, as
L1 → 0.

We now impose the boundary condition atx = x1. This gives the analogous condition:

sinα = 1
2

(√
8 + C2(x1, ω,L1) − C(x1, ω,L1)

)
(48)

whereα = φ1(x1) + β, and we again require|C(x1, ω,L1)| > 1. As before, we find two
angles (mod 2π ) α0 andα1 = π − α0. Combining the two boundary conditions we obtain
four conditions for the phase functionφ1(x1):

φ1(x1) = α0 − β0 + 2k1π (49)

φ1(x1) = π + α0 + β0 + 2k2π (50)

φ1(x1) = π − α0 − β0 + 2k3π (51)

φ1(x1) = −α0 + β0 + 2k4π (52)
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wherek1, k2, k3, k4 are any integers consistent withφ1(x1) > 0. We formally rewrite the
conditions in the compact form

φ1(x1) = ±[α0 + (−1)k+1β0] + kπ k = 1, 2, 3, . . . . (53)

In this way we get twice as many eigenvalues as in the linear and ‘nonlinear even’
cases, like a splitting of degenerate levels. In the case discussed in section 3.1,α0 = β0

by symmetry of the boundary conditions. Two of the four eigenvalue conditions then
degenerate (collapse) into one, but the remaining two conditions survive as long as the
system is nonlinear. We can combine the two conditions to yield a relation between
the Lewis invariant,L1, and the parameterω as in equation (41). The defining relation
φ1(x1, ω) = α − β implies that

sinφ1(x1, ω) = sinα cosβ − sinβ cosα. (54)

The left-hand side of this equation can be written as a function ofω. Similarly, we may
use equations (47) and (48) to express the right-hand side in terms ofω andL1. We note
that the sign of cosβ depends on whetherβ = β0 or β = β1 and similarly for cosα.

Furthermore, we may proceed to express the slope at the left-hand boundary in terms
of ω andL1. Formally eliminatingL1 from these relations yields a relationship betweenω

and9 ′(0) as in equation (42). Using this, a straightforward comparison between exact and
approximate solutions is made possible in the same fashion as in the previous section.

We apply the above discussion to the model system

h2(x) = ω2 (1 + x)2 (55)

and

h3(x) = ω (1 + x)2 (56)

in order to compare numerically obtained, ‘exact’ eigenvaluesωexact
k and approximate

eigenvaluesωNPI
k .

Table 2. Comparison of NPI eigenvalues and exact ones for the casen = 3. Note that the
corresponding approximate and exact waves have the same slopes at the left boundaryx = 0.

L1 k 9 ′(0) ωNPI ωexact

0.0001 1 −0.0207 2.0979 2.0637
0.0001 1 0.0207 2.0908 2.0570
0.0001 10 −0.0637 20.9440 20.9395
0.0001 10 0.0637 20.9439 20.9395
0.0001 100 −0.2047 209.4395 209.4391
0.0001 100 0.2047 209.4395 209.4391
0.1 1 −0.6711 2.1983 2.1700
0.1 1 0.6369 1.9723 1.9601
0.1 10 −2.0473 20.9446 20.9402
0.1 10 2.0473 20.9433 20.9390
0.1 100 −6.4289 209.4395 209.4391
0.1 100 6.4289 209.4395 209.4390
1 1 −2.2667 2.3815 2.4437
1 1 1.9478 1.5824 1.7681
1 10 −6.4747 20.9459 20.9427
1 10 6.4741 20.9420 20.9389
1 100 −20.3301 209.4396 209.4391
1 100 20.3301 209.4394 209.4390
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Figure 4. Illustration of the NPI eigenvalue curvesωk(L1) (a) for the casen = 3 and (b)
enlargement of (a) providing a detailed comparison with exact eigenvalue curves (broken) near
the linear limit.

Table 2 shows the numerical values of the sample calculations. The higher eigenvalues
of each doublet are associated with the negative derivative of the wave at the left
boundary. This is due to the nonlinearity slowing down the oscillation on the negative
branch. The asymmetry effect is partially cancelled if the wave has deflections into the
positive branch. The lowest modes have no nodes, which then causes a particularly large
eigenvalue difference between the purely negative deflection mode and the purely positive
one. Consequently, all odd numbersk (corresponding to waves with(k − 1) nodes) are
associated with comparatively larger splittings, which also remain when the coefficient
functions in the differential equation become constants.

Figure 4 illustrates the amplitude dependence of the eigenvalue splitting forωNPI,
k = 1, 2, 3, 4, with a detailed comparison with exact calculations (broken lines). Generally
the nonlinear effects decrease ask becomes larger for this model, since the actual amplitudes
(L1= constant) of the waves decrease withk. However, the odd-k waves are seen to have
comparatively larger splittings. On a detailed level the nonlinear WKB approximation
seems to reproduce the widths of the eigenvalue splittings quite accurately. The lower
subplot indicates merely an overall shift of the approximate and exact eigenvalue curves.

The quite dramatic threshold dependence of the splitting effect (best seen fork = 1)
is expected only for the Hamiltonian nonlinearity of the powern = 3. In fact, we can see
already from the explicit formulae for the waves, given in section 2.3, that the nonlinear
contributions to the waves are proportional toL(n−2)/2

1 . Since the resulting shifts in the
eigenvalues are expected to be proportional to the same ‘small parameter’, asL1 → 0, the
singular nonlinear threshold behaviour occurs only forn = 3.

Figure 5 also examines the details of the waves corresponding to a ‘doublet’ withk = 3
andL1 = 1. The absolute values of the NPI waves are used in the upper subplot and the
corresponding exact waves are in the lower subplot. A comparison with the exact curves
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Figure 5. Graphical analysis of the absolute values of the doublet waves corresponding toL1 = 1
andk = 3. Approximate (exact) waves are in the upper (lower) subplot. The doublet wave with
the larger of the eigenvalues in our model is illustrated by full-drawn curves. The approximate
waves are seen to correctly predict deviations of nodal positions and local deflections.

shows that the relative structures of the doublet waves are well reproduced by the NPI
approximation.

4. Conclusions

In this paper the normal-form theory of Thylwe and Dankowicz [1] has been shown to
provide a basis for generalizing the linear WKB approximation to a nonlinear context. We
observed that good approximations to exact solutions could be obtained and that even better
eigenvalue calculations could be performed in this nonhomogeneous situation.

We have further studied a doubling of parameter eigenvalues by analysing the NPI con-
dition for the case of odd-n nonlinearities. The characteristics of the nonlinear doubling is
different for waves of odd and even numbers of nodes. The width of the splitting is ac-
curately predicted by the approximate formulae, even if this is sometimes smaller than the
absolute displacement of the eigenvalue caused by the approximations. The kind of (sys-
tematic) errors involved in this WKB approximation do not seem to destroy the description
of small shifts. Similar observations have been made in the linear WKB theory [10].

In the present paper the degree of approximation has been twofold. In addition to
obtaining a truncated normal form Hamiltonian we have further restricted ourselves to an
adiabatic treatment. In particular the adiabatic solution of the Milne (amplitude) equation
has been chosen as a basis for the development. The uniform validity of this approximation
is related to analytic properties of the coefficient functionh2(x). The general experience
is that real and almost real zeros ofh2(x) deteriorate the adiabaticity. This is particularly
subtle whenh2(x) is a periodic function, in which case zeros with large imaginary parts
may still cause nonadiabatic resonances [3]. With these restrictions in mind, the adiabatic
approximation is expected to be good.
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Although we have not treated higher-order approximations, these fit very well into the
same formalism. On one hand, Milnes equation generates the expansion:

ρ−2(x) = ρ−2
0 (x)(1 + Y2(x) + Y4(x) + · · ·) (57)

in analogy with the expansion functions of Fröman and Fr̈oman [2]. This expansion, in
turn, generates an expansion of the transformation coefficients and the extra phase function
ηm(x). On the other hand, the higher-order Lie transform [1] just adds new terms in the
wave, containing higher multiples of the phase functions. The corresponding new coefficient
functions can be expressed in terms of the previously determined ones. While it is possible
to carry the method further in order to attempt at a higher accuracy in approximating exact
solutions, this has not been undertaken in the present text. It is our belief that the method
has been adequately illuminated without this additional degree of accuracy and further
expect the present lower-order approximation to be sufficient in many situations of practical
importance.

The problem with transition points has not been considered here. However, this is an
important task for the wider applicability of the NPI approximation. Already the inclusion
of a single (real, or almost real) transition point, for example, may lead to new insights
of nonlinear wave reflection phenomena. As previously mentioned, such transition points
between essentially stable (h2 > 0) and unstable (h2 < 0) regions would require some sort
of matching between approximate solutions in neighbouring regions.

The method developed in this paper is of significance in various physical contexts.
In certain simplified models of electromagnetic wavepropagation the nonlinear Schrödinger
equation plays a central role. In these situations, the matching at transition points is a desired
element. In other situations such as pattern formation and instabilities in infinite dimensional
systems, equations of the fundamental form (1) appear in searching for stationary solutions
of nonhomogeneous, dissipative partial differential equations. To apply stability theory to
these approximate solutions to aid in a more extensive bifurcation investigation would be
of particular interest.
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